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Multifractal Analysis of Brownian Zero Set 
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The multifractal structure of zeros Z of Brownian motion is considered. For 
different measures on Z we find typical characteristics: the r-function and 
the multifractal spectrum f(0t). A dimensional interpretation of f(00 is also 
discussed. 
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1. I N T R O D U C T I O N  

The present work  arose from a query of Ya. G. Sinai as to the multifrac- 
tality of  the set of  zeros Z of Brownian mot ion  W(t), t >10. 

The set Z is a classical example of  a stochastic fractal: it is self-similar 
(2Z and Z are statistically equivalent for any 2 > 0) and has the Hausdorff  
dimension dim Z =  l /2/ '~ It is more  difficult to define multifractality 
for Z, because that  concept is used to characterize singular probabil i ty 
measures. 15'~1 Roughly speaking, the measure p(dt) on J = [ 0 ,  1] is 
multifractal and has a multifractal spectrum f (~) ,  0~>0, if, for some 
sequence F ,  = {A;} t'~ of  parti t ions of  J, the number  of  parti t ion elements 
of  type 0c 

U_(I/IA;I)<P(A;) I ,a , l-= < U+(1/IA;[)  

or briefly /.t(A).~[A[ =, grows like A-f~=~U(1/A), where U and U_+ are 
slowly varying functions at oo. Here, {F,} is a covering cascade, that is, 
F , + ,  is a part i t ion of A;sF,  and A = m a x ;  [A~"~[ ~ 0 .  
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Multifractals frequently possess the following properties: 

(1) The Legendre transform o f f ( s ) ,  s min, (~q-f(c~))is identi- 
cal to the multifractal generating function r(q). In the simplest case where 
the partition of J is equispaced 

r ( q ) : =  lirn l n ( ~ p q ] / l n A  (1) 
n -~  oo  

where pi=#(zl~'n). For the general case see below. 

(2) W h e n f i s  a convex function, the value off(co) coincides with the 
fractal dimension of the set {t :/~(A,)~ Izl,l~}, which consists of singular 
points of a measure /~ of type ~. Here, A, is a sequence of intervals con- 
taining t and Iz/, I --* 0. For example, these may be partition elements of I',, 
or any symmetrical neighborhoods of t in the ideal case. 

The partition F,, singular points, and the type of fractal dimension are 
all elements of the still unsettled concept of multifractality. In applications 
properties 1 and 2 are frequently assumed for observed multifractals and 
constitute the content of the so-called multifractal formalism. Rigorous 
results that corroborate the formalism for multinomial cascade measures, 
both deterministic and probabilistic ones, can be found in some recent 
publications.~2'3"9 

Two procedures are proposed to analyze the multifractality of Z. One 
analyzes the multifractality of a suitable measure on Z, namely the local 
time measure of Brownian motion: 

L(dt) = 6(w(t)) dt 

(for a rigorous definition see ref. 10). This choice can to some extent be 
justified by the following result due to P. Levy. Eliminate from the time 
axis all lacunas between zeros in Z longer than e and define a Lebesgue 
measure p~(dt) on the remaining intervals {6;(e)} = Z , ,  to be called 
E-clusters. Then L(dt) is the limit of normalized measures ce-'/2tt,(dt) as 
e ~ 0 .  

The sequence Z,  of E-clusters is of interest in its own in the study 
of Z. It can be treated as a covering cascade for Z in which the parameter 
e is a resolution level for the elements of Z. In fact, any pair of points in 
Z less than c apart belongs to a single E-cluster. As is proper for coverings, 
the sizes of ~-clusters in a fixed finite interval J are uniformly bounded in 
the probabilistic sense: max{lfi(e)[:f i=J} <eln(1/e)  with probability 
p~ ---, I. 

The measure L(dt) as the limit of e-~/zll~(dt) generally distorts the 
information on the fine structure of e-clusters. For this reason the second 
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way to analyze the multifractality of Z concentrates on scaling exponents 
of the growth of the number of e-clusters of size e ~, ct > 0. 

The multifractality of Z in both these cases expresses itself as follows. 
The measure L(dt) has a continuous multifractal spectrum with respect to 
the covering cascade Z,:  f * ( ~ )  = 3 / 2 -  2ct, ct ~ [ 1/2, 3/4], and the r-function 
r*(q) such that r* = s Similarly, the number of e-clusters of size e ~ 
in J =  [0, 1] grows like e -fc'~=~, where fCL(OL) = 1 -oc/2, oce [1, 2]. The 
Legendre transform fCL is identical to the r-function of the form (1) where 
p l  = [&i(e)[ and A =e.  

The multifractal problem of Z is treated here primarily as the modeling 
of a practical situation in which one studies the multifractality of a geome- 
trical object with no prior reasons for any particular measure. Therefore all 
statements like limit theorems are formulated in the weak form, although 
the convergence for Z could be made stronger. 

This paper is organized as follows: Section 2 contains some auxiliary 
statements that are mostly proved in the appendix; section 3 contains 
definitions and calculations of the r-function for L(dt) and e-cluster size; 
Section 4 contains limit theorems for e-clusters, calculations of spectral 
f (a) ,  and some comments on the multifractal formalism. In Section 5 some 
extensions of the results are discussed. 

Notations: 

=a denotes equality in distribution. 
d-lim denotes convergence in distribution; for functional objects this 

means the convergence of finite-dimensional distributions. 
g~(t) is a stable Levy process with independent increments and 

Laplace transform E exp[ - Og~(t) ] = exp( - tO=), 0 < c~ < 1. 
G~ is the region of attraction for the stable distribution of g=(1). 

2. AUXILIARY STATEMENTS 

Let w(t), t ~> 0, be Brownian motion, Z the set of its zeros. The prob- 
ability structure of Z can be described by local time L(t)/~~ The random 
process L(t) has nondecreasing continuous paths whose growth points are 
statistically equivalent to zero set Z. The inverse function of L(t) taken to 
be continuous on the right is a one-sided stable Levy process t(L) with 
exponent 1/2. To be specific, t(L) can be represented as follows: 

Z oc, 

in terms of a Poissonian measure rc with intensity 

Eg(dl, dr)/dl dr = (2rcr 3) -l/2 = p(r)  
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Here, the variable r describes the value of the jump t(L) or the interval 
between zeros w(t), while the variable l gives the level of local time. 

Let us fix a resolution level e on Z by connecting all pairs of points 
in Z less than e apart. The resulting graph Z~ separates into connected 
clusters 6;(e). In the one-dimensional situation considered, the clusters 
form intervals of lengths 16i(e)l. Their complement to R~+ consists of 
lacunes Ai(e) of size Idi(e)l .->e. The local time function is constant on Ai 
and has increments 

Li(e) = I,~ L(dt)  
i(e) 

in the cluster intervals. 

S t a t e m e n t  1. The probability structure of the sequence of random 
quantities 

S~ = { IA;(e)l, Li(e), 1Oi(e)h i=  1 ..... v( t, e), t e 6v(e)w A~(e)} 

associated with e-clusters in [0, t] is determined by the relation 

s~ 4 {e~, + ' ( .el2) ' /- '  '7,, e~i-,  i =  1 ..... v(tle)} 

where v(t/e)/> 1 is the greatest number for which 

v--1 

~. (~+ +~7)<//e (3) 
i = l  

Here, (~+,r / i ,~7)  is a sequence of i.i.d, random vectors with ~+ and 
(rh, ~7) independent; ~+ has the density 

f+(r )  = �89 r >/1 (4) 

while the distribution of the pair (qi, ~i- ) is given by the Laplace transform 

[ So' ]' Ee -' '~-s2r = 1 +Sl - -  ( 1 - e  -~r) dr -1/2 (5) 

In particular, ~/has the exponential density 

f,,(x) = exp( -x) ,  x > O  (6) 
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while ~ -  is such that 

P(~- >x)<cexp(-Kx), x = 0.567 

e(r +o(l)], x--*O 

(7) 

(8) 

i.e., ~ -  has moments E(~-)q for all q > -1 /2 .  

S t a t e m e n t  2. The distribution function Fp(x) 
variable 

r/p = qP~- 

of the random 

has the following asymptotics: 

(a) W h e n x ~ 0  

~O(x~), 
Fp(x) = (cpx,/(_~+,,[  1 + o (1 ) ] ,  

p< --2 
p> -2  

VN 

(b) When x--* oo 

(O(x-N), p > 0 ,  VN 

I -Fp(x)=cp ~x2/p[1 +o(1) ] ,  - 4  < p  <0,  
( xl/t2+P)[l +o(1)], p< -4  

2 / p  # - -  I ,  - - 2  .... 

The analysis of multifractality involves a study of statistics of the form 

v(t/E) 

Z f ( ~ 7 ,  q , )  
i = l  

where the number of terms depends on the terms being summed. This can 
be avoided by replacing v(t/e) by the moment v*(t/e) for the first exceeding 
of tie by the sums Z~= 1 (+  that are independent of { ~ , ,  qi}. The closeness 
of v and v* is given by the following result. 

Statement  3. v * (u ) -  v(u) ~> 0 and 

d.lim eO(v,(t/e)_v(t/e))= { ~  0 > 1 / 4  
~-o , 0 < 0 < 1 / 4  

Hence, similar to v(t/e), 

d-lim (he/2) 1/2 v*(t/e)= L(t), e ~ 

822/79/3-4- 5 
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then 

Statement 4. Let (,=f(~7,q~)>>.O. If 

C 
P ( ( i > x ) - - - x - ' [ l + o ( 1 ) ] ,  x ~ ,  ctE (0, 1) (9) 

F (  1 - -  ct) 

v(t/~) 

d-lim e 1/2~' ~, C,[x/~ v(t/e)]P= g~((21rc) '/2 cL(t))[(21rt) '/2 L ( t ) ] '  (10) 
e ~ 0  i = 1  

where g~(u) is a stable Levy process of index ~x which is independent 
of L(t). 

If m = E(j  < oo, then 

v(t/e) 
d-lim x//e ~ G[v/ev( t /e )]a=m[(2/n) ' /2L( t ) ]  l*a (11) 

e ~ O  i l l  

The proofs of Statements 1-4 are relegated to the appendix. 

S t a t e m e n t  5. Let 9(e) T ~ ,  e ~ 0. Then for a fixed t 

e{e2/cp(e) < 16i(e)] < e In(l/e),  i = 1 ..... v(t, e)} ~ 1, e ~ 0 (12) 

Proof. Denote by c~, and _3~ the greatest and smallest of 

{ [6;(e)[, i --  1 ..... v(t, e)} 

respectively. Let A~= {v~. <e-K '} ,  v~ = v(t/e). Then 

P{3,  > x} ~< P { m a x ( ~ 7 ,  i =  1 ..... G) > x/e, A,} + P(A,) 

e-~"P(~/ > x/e) + P (~ )  

Take K' ~ (1/2, K), x =  0.576. Then (7) gives 

P{~,  > e ln( l/e)} < ce ~-K' + P(A,) = o( 1 ) 

In fact, P ( A , ) ~ 0 ,  e ~ 0 ,  since v,v/e/~o(e)--*aO if cp(e)~ ov with e ~ 0 .  
Similarly, using (8), one has P(_3, < eZ/q~(e))= o(1), e--* 0. Combining both 
estimates, we have (12). 

3. MULTIFRACTAL GENERATING FUNCTION r(q) 

One finds in refs. 6 and 7 extension of the definition of the r-function 
to a partition of the measure support  with unequal cells. Following along 
these lines, we define r(q) for L(dt) on J =  [0, 1]. Consider t-clusters as 
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partition elements F,  of the interval J. The partition outside Z,  need not 
be defined, since the L measure of the complement of e-clusters is zero. 
Consider the function 

where 

�9 ':(q, r )=  ~ lq(e)16;(e)l - ' ,  6,(e)=a (13) 
i 

/ 
t,(e) = L,(e)/) '-]. L,.(e) ,~,(e) J 

/ - - j  

are normalized increments of local time on e-clusters. If r* is such that the 
following limits exist: 

d-lim r r) = { ~ r > r *  
~ o  0, r < r *  (14) 

then r*(q): q ~  r* is a multifractal generating function of the measure 
L(dt) or the r-function of singularities of L(dt). 

The definition of r* requires the cells with nonzero increments of L(dt) 
to be uniformly small. Statement 5 shows that the sizes of e-clusters in a 
fixed finite interval are uniformly small in a stochastic sense: 

P{16,(e)I ~(e211n(lle),eln(lle)), Vdi~J}  ~ I, e-+O 

If a r-function o f ( l )  exists, it is identical with the generalized function 
r*(q) for covers F,, with equal cells. The original definition (1) is meaning- 
ful for the general partitions, too. Below, (1) is used to define the z-function 
for the size of increments of L(dt) on e-clusters, as well as for the size of 
the e-clusters themselves. 

T h e o r e m  1. Consider e-clusters on the interval (0, I). Then: 

(a) The r-function of singularities of L(dt) is 

z*(q) = i min(q - 1, 3/2q), Iql < co 

(b) The z-function of the size of increments of L(dt) on e-clusters is 

v~ 

zL(q):=d-l im In ~ Lq(e)/lne=�89 Iq[<oo 
~ 0  i = l  

(c) The r-function of e-clusters size is 

v~ 

ZcL(q)'=d-limln ~. 16~(e)lq/qne=min(q--1/2,2q), Iql<oo 
e ~ O  i = l  

Here, v~ is the number of e-clusters in [0, 1]. 
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Proof. 

Since 

(a) A term of (13) is 

lq(e) 16,(~)l-~Le-~q~r -" q, 

Molchan 

~ = ' f f [~7  ] -~=  ['ff~-,- ] - ' ,  p = -q / r  

one can use Statement 2 to find the asymptotics of P(~ > x) as x--* oo. It 
is easy to see that 

P(~>x)=cx- ' [ l+o(1)] ,  x~c~ ,  0 < ~ < 1  

where 

~'(2r-  q ) - ' ,  r > max(q/4, (q+ 1)/2) 
~ = [ - 2 / q ,  r<q/4, q < - - 2 ,  2r:/:qn, n = 1 , 2  .... (15) 

In the parameter region (q, r) 

D =  {(q, r ) : r < ( q +  1)/2, q>  -2}  

the quantity ( has a finite mean E( < ~ .  
It remains to use Statement 4 for 

tion (13). 
One has 

deriving 

r  -~ y' ~[4;-]-~vs v;-' Z ~, 
i =  1 i =  1 

v~ 

a ,  g~(dL(1))[(2/n)./2L(1)]_q= X 

where g~(. ) and L(1) are independent, and d = cF(1 - o Q ( 2 / 7 ~ )  1/2. For all 
parameters (q, z) 

hence 

v~ 

v;-' Z ~, " , E ~ = I  
i = '  

e~+(~'-'-q)/2~(q, r) a ,  X (17) 

(16) 

the limiting distribu- 

If c~=~(r, q) is given by (15), then 
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If (q, r) E D, then according to Statement 4, 

e~+t~-,_q)/2~(q,r) a., E~.[(2/ lr) t /2L(1)]l_q,  e---~O (18) 

Relations (17) and (18) determine the asymptotics of ~0,(q,r) for all 
parameters (q, r) except for a countable sequence of rays: 

2 r - q = l ,  q>~-2 ;  4 r - n q = 0 ,  q < - 2 ,  n = 1 , 2 , 4 , 6  .... 

The functions r --, ~ ( q ,  r) are monotonic, hence the determination of r*(q) 
just requires knowledge of the asymptotics of ~,(q, r) for a parameter set 
(q, r) which is everywhere dense. The limit relations (17) and (18) yield, in 
accordance with (14), equations for r*: 

(~ + ( 1/o~ - q)/2 = O, (q, r) -~ D 
z + ( 1  - q)/2 = 0, (q, z )ED (19) 

where ~ and D are given by (15) and (16), respectively. The value 
~-1 = 2 r - q  produces a contradiction for all q, while ct-~ = - q / 2  gives the 
desired form r*(q) for all q~<-2 .  When q~>-2 ,  the function * rL(q) is 
given by the second equation of (19). The other statements can be proved 
in a similar fashion. 

4. THE M U L T I F R A C T A L I T Y  OF Z 

4.1. Scal ing Exponents 

Theorem 2. Let N~=)(t) be the 
type oq that is, clusters that obey one of the fixed requirements 

(a) 1 6 ; ( e ) l ~ q , ( 1 6 ; ( e ) l ) < L ; ( e ) < x  16,(e)l ~ 

(b) e~o(e) < Li(e) <xe  ~ (20) 

(c) e ~ o ( e ) < 1 6 ; ( ~ ) l  < x e  ~ 

where ~o/> 0 is a nondecreasing function which is continuous at 0, ~o(0) = 0, 
and 

~ ( x ) x - P ~ o o ,  x ~ O  Vp>O 

In that case one has convergence of the following random processes: 

~C~,.L(t), - , . .  0C E [ '~1,  (X2) 
d-lim N(')(t)  e f (~ )  = 

(HA(t) ,  A = 2xL(t), �9 = ~z g ~ 0  

number of E-clusters in (0, t) of 
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where ll~(t) is a Poissonian process with independent random intensity 
measure dA(t);f(oO, the interval [a l ,  0%], and 2x are given by 

(a) f* (~ )  = 3 / 2 -  2e, cc E [ 1/2, 3/4], 2~ = cx 2 

(b) fL(or = 1 - -e ,  e e [  1/2, 1], 2x=2/r~-x 

(C) fct.(ot)=l--o:/2, ~ e  [1 ,2 ] ,  2.,.=(2x/lr3) ~/2 

When ct~ [~l ,  ~2], one has d-lim N~f~(t) = 0. 
The Legendre transforms ~of of these functions f(0~) are identical with 

the respective r-functions from Theorem I. 

R e m a r k s .  (i) Theorem 2 shows that the number of e-clusters of 
type 0t on a fixed finite interval has a power law of growth in e: O(e-sc')). 
Outside of this interval of ~ the exponent f(00 should naturally be defined 
as f ( c t ) = - 0 %  since P(N(~'l(to)=O)--*l, e~O.  The function f(et) thus 
defined gives the multifractal spectrum of (a) singularities of L(dt), (b) 
increments of L(dt) on e-clusters, and (c) the size of e-clusters. The fact that 
e l f  is identical with the respective r-functions means that the first require- 
ment of a multifractal formalism for the multifractal characteristics of Z is 
fulfilled. 

(ii) The relation dN(~.~l(t) ~- ee--r(~ dL(t), 1 < cc < 2, e ~ 0, for e-clusters 
is an extension (in the weak sense) of Levy's result ~~ for gaps of size ~>e 
on Z. (The number of such gaps on [0, t] differs from that of e-clusters by 
no more than 1.) This relation also shows that the local time measure is 
quite a suitable tool to study the fine structure of Z. This could not be 
deduced from Levy's result alone. It is for this reason that our analysis is 
concerned with two objects, the dL measure and e-clusters. 

Proof. Let A~; ~ be events of type (20). 

Step 1. Evahlation of  the probability P(A~)). The event (20a) is equiv- 
alent to the event 

A~): c(e~F)'~o(es cx, c=(2/lr) m 

Now evaluate the probability of A(i~l: 

t ' (A ]-,) = P{ ,~, [ L -  ] -~ < c x e "  - , 2 }  _ e { q ,  [ ~ i -  ] - ~  < c~o(e~;-  ) e ~ - 'p-} 

= P l ( e ) - P 2 ( e )  
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The use of Statement 2 yields the asymptotics of P, as 8 ~ 0: 

(1 - o ( e - u )  VN, ~ ( 0 ,  1/2) 
e l ( e )  = ~ P ( t l / ( ~ - ) l / - < c x ) ,  ( x =  I/2 (21) 

[C~xZe2"-I[l+o(l)], a > 1/2, ~ # 2 , 3  .... 

Since rp is monotonic, 

(p(e~-)<q~(e ' -p)  if ~ - < e  -p, p~(O, l )  

one has 

P2(e)<..P{rl(~-)-~<ce~-'/2rp(el-P)} + P { ~ -  > e  -p}  (22) 

Let 0c~> 1/2. Then the first term in (22) is o(eZ~-~). This follows from (21) 
with x =  (p(81 - P ) - - *  0, 8--+ 0. The second term in (22) can be evaluated by 
using (7): 

P(~-  > e -P) ~< c exp( -K8 -p) 

Hence P2=o(e2~-t), o:>1 1/2. 
Let ct < 1/2. One has 

P(A ~i ~1) ~ P{ q( ~- )-= > ce ~- 1/2(fl(8~- )} 
P{ r / ( ~ - ) - "  > ca ~- '/2r +')} + P{~-  < e"} 

-< P{,1(~-)-~ > c~ (~ -  '/~>/-'} + P { ~ -  < 8"}, VI'I > O, 8 < 8 0 

(23) 

The last inequality uses the fact that 

e - "~p(e ' )~oo ,  e ~ 0 ,  c1=(~-1/2)/2, c 2 = l + n  

In virtue of (21) the first term in (23) is O(e-u), VN. The same is true 
for the second term because of (8) and the arbitrariness ofn. Hence, in 
case (a), 

So(e'v), ~ ( 0 ,  1/2), VN 
P(AI~)) = (24) 

[P~(e)[l+o(1)], ~ >  1/2, ~ # 2 , 3  .... 

Step 2. N~,~(t)--*dO, when ~ [~i,  ~z]. We continue with case (a). We 
have (~l, ~2)=.(1/2, 3/4). Represent N','l(t} in the form 

v, tle) 
N'~'(t) = ~ Z, (25) 

i= l  

where Zi is the characteristic function of event A~ ~). 
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According to (24) and (21), 

Exi=P(A~'))=O(e' /2+a),  d = d ( ~ ) > 0  

Let 

Then 

i = ]  

P{ N(~=)(t) > 1/2} = P{ B~(,/~), v( t/e) <~ n~.} + P{ v(t/e) > n~.} 

< P{B,,,, v(t/e) ~n~} + o(1) ~< P(B,,~)+ o(1) 

From Chebyshev's inequality one gets 

P(B,,~) < 2n,P(A~ ~)) = O(e ~ -P) = o( 1 ), 

hence 

P(max (') N~ ( t )>  1 /2 )=P(Nt , ' ) (T )>  1/2)=o(1),  
[0, T]  

e -o0  

Step 3. The limit o f  d(')Nt,')(t) as ~e[cg ,~_] .  Because of (25), the 
limiting distribution of N t,~(t) can be found similar to the limiting distribu- 
tion of (10) from Statement 4. The difference is that Z~ is a function of 
~,.--, q~, and the parameter e, which by no means affects the method of 
proof. We begin by considering instead of (25) the modified sum 

v*(t/e) 

~t(t)= Z x, ~r(~l 
i = 1  

where v*(t/e)is independent of {AI~)}. 
The Laplace transform of the distribution of ~*(t~)... ~*(tN) iS 

N 

 ex, ) 
where 

zJv*(k ) = v*( tk/e) - v*( tk_ l /e ) 

N 

~'~ .k=-- ln{1- -[1- -exp( - - i~=kOier(~) )]  P(A(~')} 
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In the case (a) 

f ( a )  = 3/2 - 2or, (a t ,  a2) = ( 1/2, 3/4) 

P(A ~ )  = C~.,.eU2-ft~)[ 1 + o( 1 )] 

where 

< (2/=),/_,), �9 = 1/2 
C=.x = (C=x- ,  �9 > 1/2 

Let ~ 6  [ a l ,  a2)- Then  f ( ~ )  > 0  and  

N 

~9~,k= C ..... ~.. OieU'-[1 + o ( 1 ) ]  
i = k  

where o( 1 ) ~ 0, e ~ 0 uni formly over  0~ in [0,  0] ,  0 < ~ .  Because 

g l / 2 j l , ,  d (2 /~z) l /Z[L(rk)_L( tk+,)] ,  e ~ O  

one gets 

N N 

tp, :=  ~ ff~..k ZIV~ a ,  (2/n)t/2 C,..,_ y" O,L(ti)=: ~bo, 
k = l  i = l  

Recalling that  exp(-qs~.) < 1, one  gets 

�9 , = E exp( - ~.)  ~ E exp( - ~bo), e---, 0 

hence 

d-lim ~*(t)  = (2/n) '/2 C,..,.L(t) 

Let ~t--~t 2. Then  f ( c 0  = 0  and  

i = k  J 

S O  

e ~ 0  

k = l  i = k  

713 

(26) 

(27) 
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d-lim ~*( t )=HA( t )  
~ 0  

where/7.. I is a Poissonian process with the random intensity measure 

dA( t ) = C~2..,.( 2/~ ) 1/2 dL( t ) 

that is independent of events H. 
In the case (a), 

C~,_.x = C~2x 2 

Recalling that v*(t/e) and v(t/e) have similar values (Statement 3), we show 
that 

A~(t) = ~*(/) i~j , 0  - N ,  (t) d I~l a 

This can be seen as follows. One has 

P(A~.(t)> y ) = P  Zier'~)> y , v*=v*(t /e) ,  v=v( t /e)  
\ i = 1  

where the moment v is Markovian. For this reason the quantities Xv+i in 
the last relation can be replaced by Xi such that v * - v  is independent of 
A~ ~1. But 

P Xi > y  < P  Z i e f t ~ ) > y , v * - v < e  -~  + P { v *  v > e  -~ 
i 1 "- i ~  I 

e-0 t <?fY, -~ ' - i =  1 

< ecl~'~-~ + P(v* -- v > e -~ (28) 

Chebyshev's inequality has been used here. Let 1/4 < 0 < 1/2; then the first 
term in (28) is O(e ~/2-~ [see (26)], while the second is o(1) because of 
Statement 4. Since y is arbitrary, one has 

d-lim d~.(t) = 0 
~ 0  

Step 4. Cases (b), (c). The proof repeats the preceding steps. The 
asymptotics of P(A ~)) requires specification. The interval [cq, ~2] is deter- 
mined by values of ~ such that N~'~(t)___,a O. This requirement is equivalent 
to v(t/e) P(A ~ )  --* 0 or e-1/2p(A (~)) ---r O, e J, O. 
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Case (b): 

P(A (')) = P{ (2In)1/2 e=- ,/2~p(e ) ~< q, ~< x(2/n) ' /z  e~- ,/2} 

Using (6), we have 

( O(e iv) VN, 
P(A c~')) = ~1 - exp[ -- (2/n) '/2 x ]  + o(1), 

( (2/ l r )  ,/2 el/2-fc,)[  1 + o(1 )], 

where f(or  1-o~. Hence (oq, or2)= (1/2, 1) and 

Case (c): 

0 < c o <  1/2 

e =  1/2 

e >  1/2 

A(t) = x(2/r01/2 (2/~)i/2 L(t)  = x .  2/~.  L(t)  

p(Ac,l) = p(e~-nq~(e ) < ~-  < xe~,- n) 

Using (7) and (8), we have 

f O(e ̂ r) VN, 0 < ~ < 1  

P(AI~)) = ~ P ( ~ -  ~ x )  +o(1 ) ,  ~ =  1 
(,,//-s + o(1)] ,  ~ >  1 

where f (~ )  = 1 - c~/2. H e n c e  ( e l ,  ~ 2 )  = (1 ,  2 )  and 

A(t) = (v/x/~z)(2/z~)1/2 L(t) = (2x/zP)1/2 L(t)  

715  

4.2. Scaling Exponents and Dimensions 

Let 6~)(e) be type ~ e-clusters defined by any of (a)-(c)  in Theorem 2. 
The second property of the multifractal formalism for L(dt) must make 
f * ( ~ )  identical to the dimension D(0c) of  a suitable limit Z~ ~t for the sets 

z,:,= U 
i 

The dimensional interpretation o f f ( s )  in cases when this is not related 
to measure requires some specification. The case (c) concerns abnormally 
small e-clusters of size 8 ~ e  ~. The number  of these increases like 
e-fcLc~l=8 -ycLl~l/~, so the function DcL(oO=fcL(~)/oq ~ [ 1 , 2 ] ,  should 
now be the dimension. 
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In all cases considered a suitable dimension of Zto ~) may be represented 
by D(ct) as found from the following relation: 

d-lim ~ I~'?)(~)l . = {0, p > D(oQ 
~-o~=j  ~ ,  p < D(or 

This is consistent with the preceding definition of D(0Q, producing 
DL(Ct) =fL(ct)/(2ct), ere [1/2, l ] .  The result can be easily derived using 
Statements 1 and 3. Note that the range of D(a) is the same ([0, I /2])  in 
all cases. 

Theorem 2 provides an instructive example of a limit for subsets of 
Z(~) The process t---,N(~)(t) generates a counting measure dN~i(t) for g .  �9 

e-clusters of type cr the support consisting of the rightmost points of the 
clusters 6~)(e). The convergence of finite-dimensional distributions of the 
processes dC~)N~')(t) with nondecreasing paths entails weak convergence of 
the measures e f~'~ dNC,'l(t), (ll i.e., one has 

;r dNi~i(t)et~) d I ~. . , cp(t) d~?~i(t), ~o~Co(R +) (29) 

for finite continuous functions, where the limiting measure it ~) is propor- 
tional to dL(t) or to a Poissonian measure with random intensity measure 
cL(t). This means that the limiting measure is concentrated in Z and is 
stochastically continuous. For this reason (29) can be extended to finite 
bounded functions. Hence we have the following result. 

Corol lary  to Theorem 2. Let Cat, ct2] be the range of the spec- 
tral parameter 0t indicated for various singularities in Z in Theorem 2. Then 
the limiting measure support Z t0~) for d (~l dNtfi(t) is statistically equivalent 
to Z. Hence 

dim7t~)~o = 1/2>D(cr c ts[c t l ,~2]  

Different limits for Z(~ ~) for a discrete e were recently examined by 
D. Dolgopyat (personal communication). If e, = c-" ,  c > 1, then the lower 
( Z )  and upper (Z+)  limits are significantly different: dim Z =0 ,  while 
dim Z+ coincides with the above values of D(ct). When the resolution 
parameter e undergoes a superrapid decrease, e , , / e , , + ~  oo, then the 
dimensions of Z _  and Z+  are identical and are equal to D(0t). These 
results point to a purely mathematical character of the second property of 
the multifractal formalism for Z. 
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5. G E N E R A L I Z A T I O N S  

The central role in the study of zeros of Brownian motion is played by 
the connection of Z with the Levy process t(L) possessing homogeneous 
independent one-sided increments and jump density 14~ 

p ( z ) = c r  - # - l ,  r>~0, f l = l / 2  

The set Z was identified with a closure of the range of values for t(L). 
When Z is treated in this manner, all results derived here are immediately 
relevant to Levy processes with any index fl~ (0, 1). In particular, the 
spectral function of e-clusters is fct_(oc)= ( 2 -  ct)fl, ctE [ 1, 2], while that of 
L(dt) i s f* (c t )=  3 f l -  2ct, ~ [fl, s ifl].  Here, L[0, t] is a modified continuous 
inverse function of t(L). 

Setting 

p(r)=2n-I/2exp(--r)[1 -- exp( - -2r) ]  -s/2, r > O  

one gets a process c8~ t(L) which is the inverse of the local time of the 
Ornstein-Uhlenbeck process x(t): 

dx(t)+x(t)dt=dw(t), x(O) = O, t~>O 

Therefore, the zeros of x(t) can be studied in the same manner as were 
those of Brownian motion. 

A P P E N D I X  

Proof of Statement 1. Let 6i(e) denote e-clusters, Ag(e) the intervals 
between t-clusters, and LAe) increments of local time L(t) on fig(t). Let 
t(L) be the inverse function of L(t) and (2) be its representation through 
the Poissonian measure zc(dl, dr) with intensity (2z~r-a)-1/2=p(z).  From 
this it follows that the jumps in t(L) greater than e, these being the Ag(e) 
intervals, are arranged as follows: the times of jumps lg on the L axis form 
the Poissonian process 

zc(L) = fl rc(dl, dr), re(O) = 0  

with intensity 

A, = f : '  p(r )  dr = (2/n) ~/2 e -t/2 

The jump sizes [A;(e)[ are mutually independent, and do not depend on lg 
and fig(e) associated with n in the interval 0 < r < e. 
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The density of ]A,I is 

p~)/.~,=~_,/~-'/'-, ~ > ~  

On normalizing I d i l - - e l ? ,  one arrives at (4). 
The quantities li-1~_ ~ give increments of local time Li(e) in cluster 

intervals (5;(e). Since {l;} are points of jumps for •(L), the Lde)  are inde- 
pendent and exponentially distributed with parameter A,. On normalizing 
Li= (he~2) 1/2 th, one arrives at (6). 

The cluster size is 

f2 I & ( e ) l  = ~[(1 ,_ , ,  1,), &] 

Because x is Poissonian, the (g~, 1(5,1) are independent for different i. Let 
/ i - /~_ L--L; then the conditional mean is 

E{exp[ - s  1(sde)l] I L} =exp --L [1 --exp(--sr)](2nrs) -I/2 dr 

Recalling that L has an exponential distribution, one gets 

[ ]-' Ee-"'c(')-"a(")=A~ A , + s j +  ( l - e  ..... ) ( 2 a : r 3 ) - l / 2 d r  (A1) 

Substitution of A, and the normalization L = (rte/2)t/2 q, (5 = e~-, 
yield (5). 

When s~ = 0, (A1) produces the Laplace transform ~o(s) of d.-. Integra- 
tion by parts in (A1) gives 

~o(s)= 1-- ( 1 - e - ' ~ ) d r  -u'- = l + s  e-'~:~(dr) (A2) 

where ~ is a probability measure on [0,  1 ] with the density 

~ ( d r ) / d r = r - U 2 - 1 ,  re (0 ,  1) 

Obviously, 1/~0(s) is an entire function of the complex argument s. Since 

z ~ ---~a(dr) I f / re -  11 = e <re", I z l<r  

it follows that (p(s) is regular in the circle Izl ~<r, provided rexp( r )<  1. 
Bernstein's inequality yields an exponential estimate for the distribution 
of~- :  

P(~-  > x) < cp(--r) e - 'x 
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where one may set r = x > 1/2 under the condition that K exp ~c < 1, specifi- 
cally K = 0.567. This proves (7). 

Making the change of variables sr = / , l  2 in (A2), one gets 

~0(s)= e - S + ( 2 s )  I / ' -  e - ' & 2 d u  = ( n s ) - l / 2 [ 1  + o ( 1 ) ] ,  s ~  ~ 
~0 

Therefore, from Tauber 's  theorem (4) one gets (8). Hence there follows the 
finiteness of the moments  of ~ -  for negative powers q e ( -  1/2, 0), i.e., 

E [ ~ -  ]q : Iql xq-'P(~- > x )  dx  < or, q e ( - 1/2, 0) 

Since P ( ~ -  > x) exponentially decays, these moments  are finite for all q > 0. 
Relation (3) expresses the obvious circumstance that the set 

U i ( S i ( e ) w z l i ( e ) ) ,  i =  1 ..... v(t, s), must cover (0, t). 
The first e-cluster begins at 0, as can be deduced from Kolmogorov 's  

0-1 law. Hence the number of e-clusters that cover Z n  I-0, t] is not less 
than 1. 

Proof of Statement 2. Let 

1 

= ~" -q"  =qP fo rn((0, q), dl)  qp 

One has 

q>p(O) = Eexp(--Oqp)  = E(E  exp( -Oqp)  I q) 

= E e x p  - q  [1 - e x p ( - O q P x ) ] ( 2 x 3 / 2 )  -~ d x  

= ~: '  exp { - - q  ( 1 -  f~ [ l - e x p ( - O q C v ) ] d x - l / 2 ) } d q  

Put 0 = s - "  and make the change of variables Pl = su. One has 

where 
E ~op(0) = s exp[ -s~b(u)]  du (A3) 

~(u)  = u + u I +P e x p ( - u P r )  l t (dt)  

= u e x p ( -  u p) + x / ~  u p/2 f2,/2,,,,"- e x p ( - x 2 / 2 )  dx 
~0 

with the change uVr = x'-/2 in the last equality. 

(A4) 
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After some elementary algebra we obtain 

d ~b(, , )=exp(-u p) + (2uP)~/2 (1 + p/2) fz ,a ,~  exp(-x2/2) dx 
a n  .o- 

If follows that ~k(u) increases from 0 to oo for p > - 2 .  
Using the asymptotic 

f .~exp( -u2 /2)  d u e ( ; / 2 1 = x - l - - x - 3 + o ( x - 3 ) ,  X'--*oO 

One gets 

~,rll/2xl+p/2+�89176 x P ~  (A5) 
V, (x )  = ( x  + x p+ ~ - ~ x  ~-~+ ~ + O ( x  3~+ ~), x~  - ,  0 

We are going to find the asymptotic of Fp(x)= P{qp < x}, x ~ O. 
Case p > - 2 ,  x ~ O. From (A3) one gets 

fl ~0p(O) = s  e -sV' dx(O), O=s -p 

where x(~O) is an increasing function which is the inverse of ~b(x). From 
(A5) 

x(~O)=(r ( ~ 0 ~ c ~ , p > 0 )  or (~O~0, p < 0 )  

From Tauber's theorem it follows therefore that 

~Op(O)=CpSI-Z/(2+P)[1 +o(1)]  =CpO-I/(2+P)[1 "+" O(1)], 0"*  ov (A6) 

where 

Cp = F( 1 + 2/(2 + p)) n -  1/(2 +pl 

Again, the asymptotic (A6) gives 

Fp(x)=e, /F(1  + 1/(2 +p ) ) ]  x~/(2+p)[1 + o(1)], x l 0  (A7) 

Case p < - 2 ,  x ~ 0 .  Let p l = - 2 + ( 2 n )  -1, p z = p - p l < O .  The 
following obvious inequality holds for any pair of nonnegative random 
variables ~1, ~2: 

P(~, ~2 < x) < P(~, <.,/-~) + e(~2 < v/~), x > 0  
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Set ~ =r/P'~ - and ~2 =qp2, and recall that r /has  the exponential dis- 
tribution. Using (A7), we get 

P(rlP~- <x)<Fp,(xl/2).-l-exp(--x-I/12p21):O(x"), X--~O 

Since n > 0 can be chosen arbitrarily, one has 

Fp(x) = o(xN), x ~ 0, V N >  0, p < - 2  

Let us find the asymptotic of  1 - Fp(x) = Pp(x) as x --* 0. 
Case p < - 4 ,  x ~ oo. Let 

f? I ( 0 ) =  e-X~ d x = O - ' [ 1 -  q~p(0)] 

f? =O-Is [ e - ~ X - e  -s~lx~] dX=O-IS(Ii-t-h) ( A 8 )  

where O=s  -p, I~ + I 2 = ( ~ ; + I ~ ) [  .]  dx, and e > 0  is a small fixed number. 
The use of (A5) yields 

Ii  = [ e - S X - e  -s~'~x~] dx 

f: f: = [1 - - e  -s~'tx)] d x -  [1 - e  -~x] dx 

f2 = [1 - e x p ( - s ' x - P ' ) ]  d x +  O(s), s ~ 0  

where p ' =  - ( 1  + p / 2 ) >  1 and s' =nl/2s. 
The change of  variables s ' x - P ' =  u gives 

I i=(s ' ) l /p '  (p') - I  ( 1 - - e - " ) u - l - I / P '  d u + O ( s )  
,/ep' 

= F ( 1 - - 1 / p ' ) ( g l / 2 s ) l / P ' [ l + o ( 1 ) ] ,  s ~ O  

The second integral is 

Ihl = [e  . . . .  e -~q'tx)] ~<s I ( IP (x ) -x ) l  dx 

Here ~b(x) - x = x//-~ x i + p/2 [ 1 + o(x - l ) ], x ~ ~ ,  with 1 + p/2 < - 1. Hence 

12 --- O(s) = 0(11 ), s ~ O. 

822/79/3-4-16 
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Thus, 

I(O) = O-lS(Ii +Iz)=CpS--2/(2§ 1 -/- 0(1)] 

=cpO-(3+P)/~z+P)[1 +o(1)1,  0--+0 

where Cp = F((4 + p)/(2 + p)) ~-(2 +p)-,. 
By Tauber's theorem 

Fp(x)=Cp/F((3+p)/(2+p))xl/~2+P~[1 + o(1)], x ~  

Case - 2  > p > - 4 ,  x ~ oo. Equation (AS) yields 

_I(0) = [ 1 - Cpp(O)]/O 

f? =O-'s 2 [O(x)-x]dx[ l+o(1)] ,  s~O 

To see this, it is sufficient to verify that 

k-~f2 ( O ( x ) - x )  dx = d x x  p§ exp( - Txp) d~(r) 

is finite. Changing the order of integration, we have 

k =  - F ( 1  +2/t))r 

Hence 

I(O)=-F(2/p)/(4+p)O-'-/P-'[l +o(1)], 0-+0 

a n d  by Tauber's theorem 

L(x)=~lpl(4+p)- 'x2/p[l+o(1)],  x---~o~ 

Case p > -2,  x ~ oo. The conditional Laplace transform is 

E{exp(-Oqp)'rl} =exp [ rl f2 exp(1-OqPx) dx-'/21 

It follows that the cumulants r/p for r/fixed are given by 

1 

~cr=--q I' (rlPx)rdx-l/2=rlrP+l/(2r-1), r = l , 2  
ao 
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In that  case the condit ional moments  of r/p are 

E{y/p[~ } = ~ Ci,..-,nKil'"Kin= ~, ~nP+ici, Ci~>O 
ilq- ... +in=n i=1 

Hence the uncondit ional  moment s  E~'p=m.(p) are finite if Er/"P+l < oo 
and E~ "(p§ ] )<  oo. The variable r / is  exponentially distributed, so that  

m.(p) < oo <:>np + 2 > 0 

When p > 0, all moments  exist; otherwise 

m.(p) < oo, m.+](p)=oo~p~( -2 /n ,  - 2 / ( n  + 1)] (A9) 

that  is, when p ~ I . = ( - 2 / n ,  - 2 / ( n +  1)), exactly n moments  of  7 .  are 
finite. 

According to (A9), the function q~.(0) can be differentiated n times, 
when p ~/,, .  

In virtue of  

s2-~-/("+')<s-'p=O"<s ~-, pEl. ,  Isl < 1 

~p(O) can be expanded around zero 

~(-O)k " "+c,,s2[l+o(1)], O=s -p (A10) q~P(a) = k~o rnkiP) 

To see this, let p~I,,. By (A3) and (A4) 

sexp(-sx)exp[-sxl+p~hl(xP)Jdx=l+ ~. Ak+R,, ( A l l )  
k=l  

q~p(0) = I o  

where 

and 

1 

~h,(u) = f0 e . . . .  d/l(r) ~< 1 

Ak = se-SX( _sx  I +p)k ~ ( x  p) dx/k!, k= 1,..., n 
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The remainder R. can obviously be evaluated by 

R,, < ~ :  se .. . .  [sxt +a~l(xP)]"+ l dx/(n + 1)! 

fo < se- 'X(sxl+a) "+l dx / (n+ 1)! 

= csP,. + 1) = o(s z) 

where 

c = F ( ( 1  + p) (n+ 1)+  1)/F(n+ 2), 

To evaluate Ak note that 

n>~l 

Molchan 

(A12) 

~ ik(u) = f~ e-"" d/2(k)(~:) 

~ ( - u )  p. (k)~^~. 
= -~. I'Zp ~ p l ' r O N - -  

p=O 

kN+l 

( N +  1)! 
u N+l (A13) 

where ION[ < 1 and p(k) is the kth convolution of measure p; p(pk) are 
moments of p(k). 

One has 

k! A k =  se- 'X(- -sx '  +p)k ffl(X p )_  ~' /~  )(__X,),/p! aLr 
p = 0  

n - - k  r 

+p~oJ  ~ se-*X(-sx'+P>~ ( - x ' ) "  Ix(ak> dx/p ' 

The first term Ak~ in A k is of order s a when k =  I and o(s 2) when k >  I. To 
see this, evaluate Ak, k >  I, using (A13): 

Io AE1 <~c se-SX(--sxl+P)kx p( ' -k+ll  dx 

= cF(p(n + 1 ) + k + 1 ) s p(" + 1) = o(s 2) (A14) 

When s = 0 ,  the integrand is 

O(x l+p('+l)) as x---) oo 

O(X l+pn) a s  x--)0 
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Both singularities are integrable for p ~ It,, so 

A k i = - - s  2 x ' + P t ~ , ( x " ) - -  ~ #~ki(--xP)"lp! d x [ l + o ( 1 ) ]  (A15) 
p = O  

The other components  Ak can be explicitly expressed in terms of the 
g a m m a  function. Hence 

,,~k ( _O)k + ~ . (k)F(k A k = A k ~ + p = o  k ! p ~ t ~ P  " + I + p ( k + p ) )  (A16) 

Substitution of (A12) and (A14)-(A16) in ( A l l )  yields (A10). 
Let 

Since 

F,,(x) = ! ?  ( t -  x)t'ln! dFa(t) 

e-~ dx ~ ( - - o ) k  (-a)"+l I ;  
q~p(x) = ~ ink(P) + (n + 1 )----------~ 

k = O  

(A10) shows that  

o~ e-OXff ,,(x) dx = c,,O - "-Ia . . . .  l[ I + o(1 )], 

where n < - 2/p < n + 1. By Tauber ' s  theorem 

P.(x) = ~,,x 2/, +"[ 1 + o(1)], 

The use of L 'H6spi ta l ' s  rule gives 

= l im F , , (x ) /x  "-Ip+" 
x ~ ca~ 

X.- -*  O0 

0-- .0  

= l i m  D(")ff,,(x)lD~ "-/p+" 
x ~ o ~  

= ( -  1)" [(2/p +n) . - .  (2/p + 1)] - '  . l im F,, (x) lx  "-/p 

where D ~') = (d/dx)". 
Hence, 1 - Fp(x) = d,,xZ/P[ I + o( 1 )]. 
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Proof o f  S ta t emen t  3. Let us fix t and put v ,=v( t /e )  and 
v* = v*(t/e). We have 

P , , = P { v * - v ~ > ~ n }  P + 
i I i = 1  

The moment v~ is Markovian, that is, the event {v~=m} is measurable 
with respect to {g+, i=  1 ..... m}. Hence 

{_k e }  P.  = P {2 < ~ -  
i 1 i = |  

where {~?} are independent of v~ and {~7}-Let  

{" } B,=  ~o: y, ~7 <e-'/~-" 
i = 1  

Then 

In fact, 

P(/~p) = o(1),  p>O;  P(Bp)=o(l), p < O  (A17) 

i ! 

By the law of large numbers 

n - l  ~ ~,-- a , E ~ - = I ,  
i = l  

and according to P. Levy (see ref. 10) 

d- lim (roe/2) 1/2 p(t/e) = L( t  } 

n - + ~  

i i  E : E - - 0  

(AI8) 

I <~i<~nc 1 <~i~v~ 

?Z = C  - 0  

Hence, choosing 1/2 < 0 < 1/2 + p, we have P(B, )  = o( 1 ), p > 0. Similarly it 
is proved that P(Bp) = o(1), p < 0. Find an upper bound of p, .  Let p > 0; 
then 
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One has ~+ ~ G1/2; hence 

S,,(~+) : = n - 2  ~ r --* gU2(c) 
i = l  

727 

0 . .k  = - - l n  (P Oi v*(t i /e)] lJ  n Z  1/" , 
i 

n~ = e-  1/2 

where 

Recalling (A17), one has p,, =o(1), e--*0, if 2 0 - 1 / 2 - p > 0  and p > 0 .  
Hence 

P(v*-v~>e-~ 0>  1/4 

Let us find a lower bound of p,,. Let p < 0; then 

1 ~ < t - < n t  1 <~i<~ vr 

>1 P(g,,(~ + ) < e -u2-p+w, B,) 

= e{.%,(r < e - I / 2 - ,  +w} p(/~p) 

Relations (A17) and ~+~ G~/2 thus yield 

P ( v * - v ~ < e - ~  =o(1), e - -*O,  0<1 /4  

The limit distribution of v*(t/e) e 1/2 follows from (A18) and the closeness of 
v*(t/e) and v(t/s). 

Proof of Statement 4. We begin by proving that (10) holds when 
v(t/e) is replaced by v*(t/e). Fix the times 0 < t~... < tu. Let 

v*(t/e) 
~*( t )=e  l/z~ ~ ~i[%/ /~V*( l /e ) ]  II 

i = l  

Av* =v*(tJe)--v*(tk_l/e), t_ 1 = 0  (A19) 

cp(0) = E exp( -- 0r 

Using the independence of v*(t) and {(,.}, we can find the Laplace 
transform for the variables {~*(tl), i =  1 ..... N}: 

q ~ : = E e x p ( - - ~  O , ~ * ( t i ) ) = E e x p ( - ~  ~ , k ~ A v ~ . )  
i = l  k = l  
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In virtue of (9) the (; belong to the attraction region G~. Hence 

n-l/~ L (i  d , g~(c), n ~ 
i = l  

Accordingly, the Laplace transforms of these distributions 
uniformly on any finite interval 0 < 2 < A : 

[ q~(2n-l/~)] ~ ~ exp(-2~c) ,  

By Statement 3, 

hence 

and 

n - - - ~  o o  

N N 

~, O,[V/- ~ v,(ti/e)]p a ~ 0i[(2/~),/2 L(ti)] p 
i l k  i = k  

x / ~ A v ~  " a (2 / re) l /2[L( tk)_L( tk_l )  ] 

O ~ , k ' ~  c Oi[(2/rQ'/2 L ( t i ) ]  # 
i 

Molchan 

(A20) 

converge 

N 

k = l  

t d 
, c O,[(2 /Tt ) l /2L( t , ) ]  p ( 2 / ~ ) l / 2 [ L ( t k ) - - L ( t k _ ~ ) ] = ~ , o  

k = l  i 

Recalling that exp(-~b~) ~< 1, one has 

�9 ~ = E e x p ( - ~ )  ~ E exp(-~~ = ~o 

The resulting limit is the Laplace transform for the distribution of the 
random vector 

[ (2/7c) I/2 L( t i ) ]  p g~(c(2/~) I/2 L(ti)), k = 1 ..... N 

where g~(u) is a Levy process with an exponent ct that is independent 
of L(t). 

We now return to the original prelimiting process (10). It is obtained 
from (A19) by omitting the asterisk. One gets 

~ (  t) = ~ *( t ) ( v J v * )  p -  ~ 
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where 

and 

Obviously  

&=~,l , ,~ ,  s C<+,(,dT vo)~ 
I <~i~v*--v~ 

v* = v*( t /e) ,  v,  = v(t /e)  

~ . / ~ = ( ~ . - , , ~ ) ~ / 7 / ( , , ~ . , / 7 ) + 1  ~ > 1 

since 

(v* - vD , / 7  

F o r  the same reason 

Hence 

a , 0 and  v, v /~  a (2/n)l/_, L ( t )  

& = a ' [ I v * - ~ D v / ~ ] ' / ' E , { 7 . , l  p ~> o 

~',= [ ( . t -  ~D]-'I= Y~ #.+; 
1 ~< i ~< v~* - v 

Since the moment  v~ is Markov ian ,  

i = l  

where K and {~e} are independent .  
In virtue of the above  results 

I2'~ a , g~(c),  e ~ O  

because v* - v, ~ m,  e ---, 0. Hence 

and ~ =  I, c = m ,  g ~ ( u ) = u .  

n-' ~ ~; ~,m 
i = l  

d- l im ~,( t ) = d- l im ~',( t ), e ~ O 

The case E l  = m < ~ can be t reated similarly, the only difference being 
that  (A20) is replaced by the law of  large numbers:  
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